
 1

Optimizing the Synchronization of Two Neural
Networks

 2
 3

 Chih-Chung Kuo Jun Wang 4
 PID:A53075223 PID:A53077269 5
 Email:c6kuo@eng.ucsd.edu Email:juw087@eng.ucsd.edu 6
 7

Abstract 8

In this paper, we aim to provide a non-adaptive signal-preprocessing 9
algorithm that enhances synchronization between two networks. The degree 10
of synchronization of two networks can be a good indicator of the fidelity of 11
signal delivered to the biological network, which is of increasing 12
importance following the advent of sensory prosthetics. We propose that the 13
channel-to-channel correlation matrix could serve as a way of gaining 14
insights about a ‘black box network’, and that a pseudo network created 15
based on the reverse correlation matrix can improve synchronization if the 16
input signals are pre-processed through the pseudo network. We also 17
investigate different intra- and inter-network connection topologies and 18
their effects on efficiency of signal delivery in order to minimize the 19
connections needed to completely drive a biological network. 20

 21

1 Introduction 22

 23

Recent advances in neural prosthetics have led to the advent of sensory prosthetic devices[1]. Such 24

devices can create sensory emulating signals by electrically stimulating neurons. However, the 25

interface between the biological neural network and the prosthetic devices are of particular interest 26

in the context of sensory prosthetic devices due to the non-linear and stochastic nature of the 27

biological network. 28

 29

Simulations using Python-based Brian indicated that even very sparsely connected neurons result 30

in considerable distortions in signals. In order to fully reconstruct the signals generated by the 31

sensory prosthetics, signals must be pre-processed at the prosthetics to counteract distortions 32

introduced by the biological network. 33

 34

The degree of synchronization of two networks is a good indicator of the fidelity of signal 35

delivered to the biological network, which is of increasing importance following the advent of 36

sensory prosthetics [2]. Besides signal fidelity, the efficiency of signal delivery is also of 37

importance. Since currently available neural stimulating techniques involve invasive contacts, 38

reduction of interface area will undoubtedly attract more potential users. However, minimally 39

invasive interface inevitably reduces the number of connections between the biological network 40

and the neural prosthetic device. Different connection topologies must be incorporated to provide 41

comprehensive stimulation of the biological neural network. (Figure 1). 42

 43

 44

 45
Figure 1. Interface between a prosthetic device and the biological neural network 46

Currently, several optimizing algorithms have been proposed, including the liquid state 47
machine[3] and the echo state machine[4]. However, all these currently available methods 48
rely greatly on machine learning algorithms, whose performance is often times mediocre 49
given insufficient number of trainings. 50
 51

In this paper, we tried a new way to enhance the synchronizing of two networks which is 52

evaluated by compare the correlation between input and output. It is simplified and time-saving. 53

 54

2 Method 55

 56

2 .1 Netw o rk co nstruc t io n 57

 58
We tried to use two networks to mimic the process that signal transfers from a device to a 59

biological neural network. As shown in Figure 2, A denotes the device and B denotes the 60

biological network. 61

 62

In order to obtain legitimate evaluation results, the simulated biological network has to be faithful 63

representation of a real biological network. On top of that, the simulated network has to be 64

scalable such that it is applicable to various scenarios. Below details the simulation setup we used 65

throughout the project with an aim to satisfy the above requirements. 66

 67

 68
Figure 2. The basic frame of networks 69

 70

 71

2 .1 .1 S ig na l pro duc ing ne tw o rk 72

 73
As figure1 shows, network A is the signal producing network. In real-life scenario, this is 74

equivalent to the prosthetic device from which sensory signals are generated. This 75

signal-generating network can be set up to produce any signals. Of particular significance here are 76

the Possion input and sinusoidal input, which are used during the training process and evaluation 77

respectively. Network A is capable of performing distortion eliminating signal-preprocessing, 78

which in this project is realized through the pseudo neural network connections from A to Binput. 79

 80

2 .1 .2 Netwo rk B 81

 82
Network B was constructed to mimic the biological neural network. It comprises three layers 83

(input, hidden and output). A total of 400 integrate-and-fire neurons are used as the hidden layer, 84

of which 80% of the neurons are excitatory and 20% are inhibitory ([5]). To evaluate the overall 85

activity of network B, a total of 80 randomly selected channels are measured. The selected 86

channels forward signals to Boutput, where in real life can be an array of electrodes. Note that the 87

channel numbers also reflect the location of a specific neuron, with |𝑛𝑖 − 𝑛𝑗| being the distance 88

between two neurons as the system is a 1-D approximation of a biological network. 89

 90

2 .1 .3 Co nnec t io n be tween ne tw o rks 91
 92

Neurons in a biological network can form sparse inter-connections within the same network. 93

Synapses may as well span different networks, relaying information from one network to another. 94

The ways to connect two networks can be random, full, small world and connections with custom 95

matrix as weight. Actually, we can achieve different connection by adjusting the custom matrix. 96

 97

 98

2 .2 Tra in ing a nd ev a lua t io n 99

 100
We tried to use a matrix M to characterize the network B, then the output of network B can be 101

described by equation (1). To achieve high fidelity of signal transfer, we use the inverse Matrix of 102

M, namely M-1, as the connection weight matrix between A and input of B. Then the input of 103

network B, Binput can be denoted as equation (2). Therefore, Boutput would equal to A, which shows 104

in equation (3). 105

 106

Boutput = Binput ∗ M (1) 107

Binput = A ∗ 𝑀−1 (2) 108

𝐁𝐨𝐮𝐭𝐩𝐮𝐭 = 𝐀 ∗ 𝑀−1 ∗ 𝑴−𝟏 ∗ 𝐌 = 𝐀 (3) 109

 110

The key point of the network construction is how to obtain the Matrix M. we determined the value 111

of elements of M via correlation. We supposed that a virtual direct link between every input 112

element (I1 to IN) and every output element (O1 to ON) exists, as the Figure 3 shows. Herein, a 113

corresponding correlation coefficient 𝐶𝑜𝑟𝑟𝑚𝑛 could be calculated, as equation (4) shows. Further, 114

we regarded the element Mmn of Matrix M is direct proportion to 𝐶𝑜𝑟𝑟𝑚𝑛, as equation (5) shows. 115

Finally, we found that the relative optimal results could be obtained when K is 2000. In this way, 116

the matrix M was determined. 117

 118

Correlation(Im, On) = 𝐶𝑜𝑟𝑟𝑚𝑛 (4) 119

Mmn = K ∗ 𝐶𝑜𝑟𝑟𝑚𝑛 (5) 120

 121

 122
Figure 3. The principle used to calculate the correlation between input and output. 123

 124

After every single time of running the code, we could obtain a M. Namely, N times later, we could 125

get N Ms. Then the average value of Ms were calculated, and it was regarded as the final M. After 126

the Matrix M was determined, the M-1 was calculated subsequently. Then we substituted the M-1 127

into weight matrix of connection between network A and network B. The following are the 128

detailed steps. 129

 130

The 80 neurons in network A produced Poisson signal at 40Hz, the signal of 80 channel was fully 131

delivered to input layer of B, which also contains 80 neurons as mentioned above. Then the 132

corresponding output of network B could be produced. Both the data of input and output of 133

network B were stored for calculating the correlation coefficient between each channel of input 134

and output. According to the method mentioned above, correlation matrix M (80 ∗ 80) was 135

determined. Then we used inv(M), the inverse matrix of M, as the connection matrix for A-Binput. 136

Until now, the training of the networks were finished. 137

 138

Last, we calculated the Pearson‘s correlation coefficient between input and output to evaluate the 139

degree of two neural networks’ synchronizing using the following equation (6). 140

 (6) 141

 142

3 Result and discussion 143

 144

3 .1 The S ig na l inp ut a nd co rrespo n ding o utp ut 145

 146
Before we can evaluate the training performance, a proper model of a biological neural network 147

must first be constructed. Brian Simulator allows semi scalable systems in which the number of 148

neurons in a network can be specified arbitrarily. However, simulations showed that the built in 149

connection topologies in Brian Simulator induces excess spiking activities when a network is 150

sufficiently large. 151

 152

3 .1 .1 Ra ndo m co nnec t i o ns in B io lo g ica l Netwo rk 153

 154
When the neurons within a network are connected randomly, spontaneous spiking occurs when the 155

network is large. Since increased neural network size also increases the number of synapses 156

connected to a neuron will also increase. The accumulation of signals from these synapses may 157

easily exceed the spiking threshold for the post-synaptic neuron. This eventually results in a 158

positive feedback loop, which is not biologically tolerable. 159

 160

3 .1 .2 Lo ca l i zed co nnec t io ns in B io lo g ica l Netw o rk 161

 162
In an attempt to solve for the scalability of the system, a new routing algorithm that takes into 163

account the distance between two neurons is proposed, with probabilities that a connection exists 164

between neurons in close proximity being higher than when two neurons are placed distantly 165

apart. This eliminates the spontaneous spiking activities of a simulated biological neural network. 166

 167

As of now, the input signal from Binput to B is delivered on a 1-1 basis, in which the 80 input 168

(Figure 4(a)) channels map to the first 80 out of the 400 channels in network B. When hidden 169

layer of B is connected by a random way, the neurons of B are easy to be bursting, like Figure 4 170

(b) shows. It is still problematic, however, if localized connections are implemented in network B. 171

If only the first 80 channels of network B are provided with input, the signals normally would not 172

reach faraway neurons because localized connection dictate that signals are not likely to be 173

delivered to distant neurons in a single hop (Figure 4(c)). In the next section we aim to provide a 174

solution to this problem. 175

 176

 177
(a) 178

 179
(b) (c) 180

Figure 4. The plot of spiking of input and output layer when the connection is conducted via small 181

world. (a) Random spiking of input layer of network B; (b) the spiking of network B when the 182

connection of B itself is random; the connection between input layer and hidden layer of B is also 183

random; (c) the spiking of network B when the connection of B itself is localized; the connection 184

between input layer and hidden layer of B is one to one to one. 185

 186

3 .1 .3 Sma l l w o r ld co nnec t io ns a t the in ter face 187

 188
To provide comprehensive stimulation of a network that adopts localized intra-connections, 189

optimally inputs need to be spread evenly on all channels. However, this is infeasible in vivo as 190

neurons in living organisms are not evenly spaced, making it hard for electrodes to evenly 191

stimulate the whole network. To better reflect reality, a simplified small world connection model 192

is used. In our model, 40 synapses form random connections with neurons in network B. The rest 193

of the 40 connections are location-based. As Figure 5 shows, results from this combination of 194

small world and location-based connections are consistent with biological experiments. Therefor 195

we will use such connecting topologies throughout this project. 196

 197
(a) (b) 198

Figure 5. The plot of spiking of input and output layer when the connection is conducted via small 199

world. (a) The spiking of input layer of B; (b) the spiking of output layer of B. 200

 201

 202

3 .2 Per fo r ma nce a na ly s i s 203

 204

There are two ways to quantify the synchronization between two networks. To analyze the 205

channel-to-channel synchronization, correlation between any two channels can be evaluated. In 206

Python, this is simply done by taking the Pearson’s correlation coefficients between two channels. 207

To determine the activity of a whole network, a small-time-window averaging of all the spikes in a 208

certain time period can be calculated as a function of time[6]. Correlation coefficient can then be 209

derived based on the averaging results from the input and the output networks. 210

 211

After the training is complete, the system is ready to be tested. A perturbed sinusoidal signal 212

(Figure 6(a)) is used to evaluate the performance of our anti-distortion training algorithm. Our 213

input signal differs from normal sinusoidal spike trains in that every channel is still independent of 214

each other. Thus channel-to-channel correlation analysis still gives meaningful information as to 215

how an input channel correlates to an output channel. Figure 6(b), (c) show the output before and 216

after optimizing respectively. 217

 218
(a) (b) 219

 220

 221
 (c) 222

 Figure 6. Results of raster_plot when the input is sine. (a) The spike of A; (b) the spike of output 223

layer of B before optimizing; (c) the spike of output layer of B after optimizing. 224

 225

The raster plots above show that even after optimization, signals are still rather distorted. 226

However, small-time-window averaging indicates improvement in overall synchronization of 227

neural activities between the two networks, with an increase in correlation from 0.4610 to 0.7255. 228

Figure 7(a), (b) show the results of using perturbed sinusoidal signals as inputs before and after 229

optimizing respectively. When using indecently random signals as inputs, the improvement is also 230

evident, with an increase in correlation from -0.0644 to 0.2915, as the Figure 7(c), (d) show. 231

 232

 233
(a) (b) 234

 235
(c) (d) 236

Figure 7. Results of raster_plot. The width of time window is 1ms. (a) The spike of A, when the 237

input is sine; (b) the spike of output layer of B, when the input is sine; (c) the spike of A, when the 238

input is Poisson; (d) the spike of output layer of B, when the input is Poisson. 239

 240

We further analyzed the exact reasons that lead to the increase of the synchronization. Above 241

results show that our optimizing is effective. After using the M-1 to replace the original matrix of 242

full connection, what parameters are changed? ‘The effective number of synapse and the strength 243

of every synapse’. 244

 245

It seems obvious that when the strength of every synapse increases, the synchronization will 246

increase[7]. But that makes sense only when inhibitive synapse does not exist. Actually, the 247

synchronization decreased when we enlarge the value of M-1. That identifies that the increase of 248

synchronization of two networks constructed in our project is not directly related to the increase of 249

strength of matrix weight. Therefore the remaining possible reason is that the effective number of 250

synapse which enhances synchronization increase. 251

 252

3 .3 Adv a nta g es a nd d i sa dv a nta g es 253

 254

Basically, we only need one run to obtain the connection matrix. It is more efficient compared 255

with other recursive training methods given limited train time. However, the matrix we obtained is 256

not exact the transfer matrix. As a result, the corresponding correlation between input and output 257

might not be the highest. 258

 259

3 .4 Future w o rk 260
 261

The results above hinted that conversion from the inverse matrix to the pre-processing connection 262

matrix may not be straightforward. Several optimizations of the inverse correlation matrix can be 263

carried out in order to obtain greatest improvement over synchronization between two networks. 264

Such modifications include normalization and shifting the weights such that the mean becomes 265

zero; however, none of these measures can completely counteract the distortions introduced in the 266

biological network. We suspect this is due to the intrinsic difference between a connection matrix 267

and an inverse correlation matrix. 268

 269

A more deterministic way of solving such problems involves deriving the transfer function of the 270

nonlinear biological neural network[8]. More accurate distortion elimination mechanisms can be 271

developed accordingly. 272

 273

4 Conclusion 274

 275

In this project, we tried to use the synchronizing degree of two networks to measure the fidelity of 276

signal reconstructions at the brain. Based on Python and Brian, two networks were constructed. 277

Compared ways to connect two network, we found that the efficiency of signal delivery 278

could be enhanced when using small world connection. Besides, we obtained the 279

characteristic matrix M of network B basically via calculating the correlation between input 280

elements and output elements of B. At last, we consider the M-1 as the weight matrix of A and 281

input of B. In this way, we successfully increased the synchronizing between two networks. 282

Ac kno w ledg me nts 283

We wish to express our sincere gratitude to our supervisor of this project, Professor Cauwenberghs 284

for the valuable guidance and advice. He inspired us greatly to continue working on this project. 285

We also would like to thank Dr. Fred and Bruno who offered a great assistance and support. This 286

project would not have been possible without the support of bioengineering department of 287

University of California, San Diego. 288

 289

References 290

 291

[1] J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, et al., "Stretchable 292

silicon nanoribbon electronics for skin prosthesis," Nat Commun, vol. 5, 293

12/09/online 2014. 294

[2] D. Eytan and S. Marom, "Dynamics and effective topology underlying 295

synchronization in networks of cortical neurons," J Neurosci, vol. 26, pp. 8465-76, 296

Aug 16 2006. 297

[3] W. Maass and H. Markram, "On the computational power of circuits of spiking 298

neurons," Journal of Computer and System Sciences, vol. 69, pp. 593-616, 12// 299

2004. 300

[4] F. Xue, Z. Hou, and X. Li, "Computational capability of liquid state machines with 301

spike-timing-dependent plasticity," Neurocomputing, vol. 122, pp. 324-329, 12/25/ 302

2013. 303

[5] N. Brunel, "Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory 304

Spiking Neurons," Journal of Computational Neuroscience, vol. 8, pp. 183-208, 305

2000/05/01 2000. 306

[6] A. Sornborger, T. Yokoo, A. Delorme, C. Sailstad, and L. Sirovich, "Extraction of 307

the average and differential dynamical response in stimulus-locked experimental 308

data," Journal of Neuroscience Methods, vol. 141, pp. 223-229, 2/15/ 2005. 309

[7] J. Cao and J. Lu, "Adaptive synchronization of neural networks with or without 310

time-varying delay," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 311

16, pp. -, 2006. 312

[8] D. Lekkas, C. Imrie, and M. Lees, "Improved non-linear transfer function and neural 313

network methods of flow routing for real-time forecasting," Journal of 314

Hydroinformatics, vol. 3, pp. 153-164, 2001. 315

 316

 317

 318

APPENDIX 319

-*- coding: utf-8 -*- 320

 321

from brian import * 322

import scipy as sp 323

import random 324

from scipy.stats.stats import pearsonr 325

from numpy import matrix 326

 327

matplotlib.pyplot.close("all") 328

 329

 330

 331

tau = 20 * msecond # membrane time constant 332

Vt = -50 * mV # spike threshold 333

Vr = -60 * mV # reset value 334

El = -61 * mV # resting potential 335

psp = 0.5 * mvolt # postsynaptic potential size 336

neuron_number=400 337

runtime=200 * msecond 338

for runrep in range (1): 339

reinit(0*second) 340

def Corr(array1, array2,len_array): 341

M_forward=sp.zeros((len_array,len_array)) 342

for i in range(len_array): 343

for j in range(len_array): 344

temp=pearsonr(array1[i],array2[j]) 345

M_forward[i,j]=temp[0] 346

return M_forward 347

def SPKvsT(neu_spikes, timewindow, timescale): 348

neuronnum, spktime= zip(*neu_spikes) 349

spikeaccum=zeros(timewindow*timescale) 350

for tidx in range(timewindow*timescale): 351

for spkidx in range(len(spktime)): 352

if abs(tidx/timescale *ms-spktime[spkidx]) < 1/timescale *ms: 353

spikeaccum[tidx]=spikeaccum[tidx]+1 354

return spikeaccum 355

#def GetConnectionMatrix(): 356

B_input=PoissonGroup(50, rates=40*Hz) 357

V_B_input = StateMonitor(B_input, 'V', record=True) 358

V_B_output = StateMonitor(B_output, 'V', record=True) 359

corr=Corr(V_B_input,V_B_output,50) 360

return corr 361

#def Matrix_distance(neuron_number): 362

weightmatrix=sp.zeros((neuron_number,neuron_number)) 363

for x in range(neuron_number): 364

for y in range(x+1,neuron_number): 365

if random.random()>0.3: #excitatory connection 366

weightmatrix[x,y]=50*exp(-abs(x-y)/100)*mV 367

elif random.random()<0.1: #inhibitory connection 368

weightmatrix[x,y]=-50*exp(-abs(x-y)/100)*mV 369

else: 370

weightmatrix[x,y]=0 371

return weightmatrix 372

373

#def reconstructMatrix(Mat): 374

x_len, y_len =Mat.shape 375

weightmatrix=sp.zeros((x_len,y_len)) 376

for x in range(x_len): 377

for y in range(y_len): 378

#eqs = Equations(''' 379

#dV/dt = (-V+ge-gi)/taum : volt 380

#dge/dt = -ge/taue : volt 381

#dgi/dt = -gi/taui : volt 382

#''') 383

definition of connection 384

#B = NeuronGroup(N=400, model='dV/dt = -(V-El)/tau : volt', 385

threshold=Vt, reset=Vr) 386

#B_Connection = Connection(B,B,weight=Matrix(len(B),len(B))) 387

388

389

#B_input=NeuronGroup(N=50, model='dV/dt = -(V-El)/tau : volt', 390

threshold=Vt, reset=Vr) 391

#B_input_Connection = 392

Connection(B_input,B_input,structure='dense',weight=Matrix(len(B_input),len(B393

_input))) 394

395

396

#B_output=NeuronGroup(N=50, model='dV/dt = -(V-El)/tau : volt', 397

threshold=Vt, reset=Vr) 398

#B_output_Connection = 399

Connection(B_output,B_output,weight=Matrix(len(B_output),len(B_output))) 400

401

#B_input_B_Connection = 402

Connection(B_input,B,weight=Matrix(len(B_input),len(B))) 403

#B_B_output_Connection = 404

Connection(B,B_output,weight=Matrix(len(B),len(B_output))) 405

definition of connection 406

def sinchoose(): 407

spikelist=[] 408

for time in range(200): 409

numberofspikes=int((sin(time/15)/2 + 0.5)*80) 410

for idx in range(numberofspikes): 411

spikelist.append([random.randint(0,80),time*ms]) 412

return spikelist 413

A = SpikeGeneratorGroup(80,sinchoose()) 414

A=PoissonGroup(80, rates=40*Hz) 415

B = NeuronGroup(N=400, model='dV/dt = -(V-El)/tau : volt', 416

threshold=Vt, reset=Vr) 417

B_Connection = Connection(B,B,weight=load('W_BB.npy')) 418

B_input=NeuronGroup(N=80, model='dV/dt = -(V-El)/tau : volt', 419

threshold=Vt, reset=Vr) 420

#B_input_Connection = 421

Connection(B_input,B_input,weight=load('W_BiBi.npy')) 422

B_output=NeuronGroup(N=80, model='dV/dt = -(V-El)/tau : volt', 423

threshold=Vt, reset=Vr) 424

#B_output_Connection = 425

Connection(B_output,B_output,weight=load('W_BoBo.npy')) 426

B_input_B_Connection = Connection(B_input,B,weight=load('W_BiB.npy')) 427

#B_input_B_Connection = Connection(B_input,B, sparseness=0.015625, 428

weight=5*mV) 429

B_B_output_Connection = Connection(B,B_output,weight=load('W_BBo.npy')) 430

#B_B_output_Connection = Connection(B,B_output, sparseness=0.015625, 431

weight=5*mV) 432

C1 = Connection(A, B_input) #assume one to one A->B connection 433

C1.connect_one_to_one(weight=1*mV) 434

A_B_input_Connection = Connection(A,B_input, 435

weight=load('corr_I_avg.npy')) 436

#A_B_input_Connection = Connection(A,B_input, 437

weight=load('avg_corrI60.npy')) 438

###A_B = Connection(A,B_input, weight=) 439

#func=10* mvolt 440

#C1 = Connection(A, B_input, weight=func) 441

#B_input=B.subgroup(50); 442

#B_output=B.subgroup(50); 443

func is the function of distance between 444

pre and post, the membrane potential, and the number of connection 445

A_spike = SpikeMonitor(A) 446

B_spike = SpikeMonitor(B) 447

B_input_spike = SpikeMonitor(B_input) 448

B_output_spike = SpikeMonitor(B_output) 449

#B.V = Vr + rand(400) * (Vt - Vr) 450

#M = StateMonitor(B, 'V', record=True) 451

#C1[0, 0] = 50 * mV 452

V_B_input = StateMonitor(B_input, 'V', record=True) 453

V_B_output = StateMonitor(B_output, 'V', record=True) 454

run(runtime) 455

corr=Corr(V_B_input,V_B_output,80) 456

corr_temp=matrix(corr) 457

corr_I=corr_temp.I 458

save('corr_locoff1_'+str(runrep) ,corr) 459

save('corr_I_locoff1_'+str(runrep),corr_I) 460

print B_spike.nspikes 461

print B_output_spike.nspikes 462

463

#figure(1) 464

#plot(M.times / ms, M[0] / mV) 465

 466

xlabel('Time (in ms)') 467

ylabel('Membrane potential (in mV)') 468

title('Membrane potential for neuron 0') 469

 470

 471

figure(1) 472

raster_plot(A_spike) 473

title('A_spike') 474

 475

figure(2) 476

raster_plot(B_spike) 477

title('B_spike') 478

 479

figure(3) 480

raster_plot(B_input_spike) 481

title('B_input_spike') 482

 483

figure(4) 484

raster_plot(B_output_spike) 485

title('B_output_spike, before optimizing') 486

 487

 488

inputspk =SPKvsT(A_spike.spikes,200,1) 489

outputspk=SPKvsT(B_output_spike.spikes,200,1) 490

figure() 491

plot(sp.arange(0,200,1),inputspk /max(inputspk), label='Input at A: sin') 492

plot(sp.arange(0,200,1),outputspk/max(outputspk), label='Output at B before 493

optimizing') 494

pylab.legend(loc='upper right') 495

print pearsonr(inputspk /max(inputspk),outputspk/max(outputspk)) 496

 497

/// 498

from brian import * 499

import scipy as sp 500

import random 501

from scipy.stats.stats import pearsonr 502

from numpy import matrix 503

import scipy as sp 504

from numpy import matrix 505

 506

avg=sp.zeros((80,80)) 507

for i in range (5): 508

avg=avg+load('corr_locoff1_'+str(i)+'.npy') 509

avg=avg/10 510

 511

#avg=avg/(avg.max())/10 512

 513

save('corr_locoff1_',avg) 514

 515

avg_temp=matrix(avg) 516

avg_I=avg_temp.I 517

avg_I_transfer=avg_I+abs(avg_I.min()) 518

avg_I_modify=avg_I_transfer/avg_I_transfer.max() 519

save('corr_I_avg',avg_I_modify/2000) 520

 521

/// /////////// 522

 523

import scipy as sp 524

import random 525

from brian import * 526

 527

def Matrix(na,nb): 528

weightmatrix=sp.zeros((na,nb)) 529

for x in range(na): 530

for y in range(nb): 531

if x==y: 532

weightmatrix[x,y]=0*mV 533

elif random()>0.8: #excitatory connection 534

weightmatrix[x,y]=1.00*mV 535

elif random()<0.2: #inhibitory connection 536

weightmatrix[x,y]=-1*mV 537

else: 538

weightmatrix[x,y]=0 539

return weightmatrix 540

save('W_BB1',Matrix(400,400)) 541

save('W_BiBi1',Matrix(80,80)) 542

save('W_BoBo1',Matrix(80,80)) 543

save('W_BiB1',Matrix(80,400)) 544

save('W_BBo1',Matrix(400,80)) 545

 546

