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Abstract 8 

In this paper, we aim to provide a non-adaptive signal-preprocessing 9 
algorithm that enhances synchronization between two networks. The degree 10 
of synchronization of two networks can be a good indicator of the fidelity of 11 
signal delivered to the biological network, which is of increasing 12 
importance following the advent of sensory prosthetics. We propose that the 13 
channel-to-channel correlation matrix could serve as a way of gaining 14 
insights about a ‘black box network’, and that a pseudo network created 15 
based on the reverse correlation matrix can improve synchronization if the 16 
input signals are pre-processed through the pseudo network. We also 17 
investigate different intra- and inter-network connection topologies and 18 
their effects on efficiency of signal delivery in order to minimize the 19 
connections needed to completely drive a biological network. 20 

 21 

1 Introduction  22 

 23 

Recent advances in neural prosthetics have led to the advent of sensory prosthetic devices[1]. Such 24 

devices can create sensory emulating signals by electrically stimulating neurons. However, the 25 

interface between the biological neural network and the prosthetic devices are of particular interest 26 

in the context of sensory prosthetic devices due to the non-linear and stochastic nature of the 27 

biological network.  28 

 29 

Simulations using Python-based Brian indicated that even very sparsely connected neurons result 30 

in considerable distortions in signals. In order to fully reconstruct the signals generated by the 31 

sensory prosthetics, signals must be pre-processed at the prosthetics to counteract distortions 32 

introduced by the biological network. 33 

 34 

The degree of synchronization of two networks is a good indicator of the fidelity of signal 35 

delivered to the biological network, which is of increasing importance following the advent of 36 

sensory prosthetics [2]. Besides signal fidelity, the efficiency of signal delivery is also of 37 

importance. Since currently available neural stimulating techniques involve invasive contacts, 38 

reduction of interface area will undoubtedly attract more potential users. However, minimally 39 

invasive interface inevitably reduces the number of connections between the biological network 40 

and the neural prosthetic device. Different connection topologies must be incorporated to provide 41 

comprehensive stimulation of the biological neural network. (Figure 1). 42 

 43 

 44 



 45 
Figure 1. Interface between a prosthetic device and the biological neural network 46 

Currently, several optimizing algorithms have been proposed, including the liquid state 47 
machine[3] and the echo state machine[4]. However, all these currently available methods 48 
rely greatly on machine learning algorithms, whose performance is often times mediocre 49 
given insufficient number of trainings.  50 
 51 

In this paper, we tried a new way to enhance the synchronizing of two networks which is 52 

evaluated by compare the correlation between input and output. It is simplified and time-saving.  53 

 54 

2  Method 55 

 56 

2 .1  Netw o rk co nstruc t io n    57 

 58 
We tried to use two networks to mimic the process that signal transfers from a device to a 59 

biological neural network. As shown in Figure 2, A denotes the device and B denotes the 60 

biological network. 61 

 62 

In order to obtain legitimate evaluation results, the simulated biological network has to be faithful 63 

representation of a real biological network. On top of that, the simulated network has to be 64 

scalable such that it is applicable to various scenarios. Below details the simulation setup we used 65 

throughout the project with an aim to satisfy the above requirements. 66 

 67 

 68 
Figure 2. The basic frame of networks 69 

 70 

 71 

2 .1 .1  S ig na l  pro duc ing  ne tw o rk  72 

 73 
As figure1 shows, network A is the signal producing network. In real-life scenario, this is 74 

equivalent to the prosthetic device from which sensory signals are generated. This 75 

signal-generating network can be set up to produce any signals. Of particular significance here are 76 

the Possion input and sinusoidal input, which are used during the training process and evaluation 77 



respectively. Network A is capable of performing distortion eliminating signal-preprocessing, 78 

which in this project is realized through the pseudo neural network connections from A to Binput. 79 

 80 

2 .1 .2  Netwo rk B   81 

 82 
Network B was constructed to mimic the biological neural network. It comprises three layers 83 

(input, hidden and output). A total of 400 integrate-and-fire neurons are used as the hidden layer, 84 

of which 80% of the neurons are excitatory and 20% are inhibitory ([5]). To evaluate the overall 85 

activity of network B, a total of 80 randomly selected channels are measured. The selected 86 

channels forward signals to Boutput, where in real life can be an array of electrodes. Note that the 87 

channel numbers also reflect the location of a specific neuron, with |𝑛𝑖 − 𝑛𝑗| being the distance 88 

between two neurons as the system is a 1-D approximation of a biological network. 89 

 90 

2 .1 .3  Co nnec t io n  be tween  ne tw o rks   91 
 92 

Neurons in a biological network can form sparse inter-connections within the same network. 93 

Synapses may as well span different networks, relaying information from one network to another. 94 

The ways to connect two networks can be random, full, small world and connections with custom 95 

matrix as weight. Actually, we can achieve different connection by adjusting the custom matrix. 96 

  97 

 98 

2 .2  Tra in ing  a nd  ev a lua t io n  99 

 100 
We tried to use a matrix M to characterize the network B, then the output of network B can be 101 

described by equation (1). To achieve high fidelity of signal transfer, we use the inverse Matrix of 102 

M, namely M-1, as the connection weight matrix between A and input of B. Then the input of 103 

network B, Binput can be denoted as equation (2). Therefore, Boutput would equal to A, which shows 104 

in equation (3). 105 

 106 

Boutput = Binput ∗ M  ( 1 )  107 

Binput = A ∗ 𝑀−1   ( 2 )  108 

𝐁𝐨𝐮𝐭𝐩𝐮𝐭 = 𝐀 ∗ 𝑀−1 ∗ 𝑴−𝟏 ∗ 𝐌 = 𝐀  (3 )  109 

 110 

The key point of the network construction is how to obtain the Matrix M. we determined the value 111 

of elements of M via correlation. We supposed that a virtual direct link between every input 112 

element (I1 to IN) and every output element (O1 to ON) exists, as the Figure 3 shows. Herein, a 113 

corresponding correlation coefficient 𝐶𝑜𝑟𝑟𝑚𝑛 could be calculated, as equation (4) shows. Further, 114 

we regarded the element Mmn of Matrix M is direct proportion to 𝐶𝑜𝑟𝑟𝑚𝑛, as equation (5) shows. 115 

Finally, we found that the relative optimal results could be obtained when K is 2000. In this way, 116 

the matrix M was determined. 117 

 118 

Correlation(Im, On) = 𝐶𝑜𝑟𝑟𝑚𝑛  (4) 119 

Mmn = K ∗ 𝐶𝑜𝑟𝑟𝑚𝑛  (5) 120 

 121 



 122 
Figure 3. The principle used to calculate the correlation between input and output. 123 

 124 

After every single time of running the code, we could obtain a M. Namely, N times later, we could 125 

get N Ms. Then the average value of Ms were calculated, and it was regarded as the final M. After 126 

the Matrix M was determined, the M-1 was calculated subsequently. Then we substituted the M-1 127 

into weight matrix of connection between network A and network B. The following are the 128 

detailed steps.  129 

 130 

The 80 neurons in network A produced Poisson signal at 40Hz, the signal of 80 channel was fully 131 

delivered to input layer of B, which also contains 80 neurons as mentioned above. Then the 132 

corresponding output of network B could be produced. Both the data of input and output of 133 

network B were stored for calculating the correlation coefficient between each channel of input 134 

and output. According to the method mentioned above, correlation matrix M (80 ∗ 80) was 135 

determined. Then we used inv(M), the inverse matrix of M, as the connection matrix for A-Binput. 136 

Until now, the training of the networks were finished.  137 

 138 

Last, we calculated the Pearson‘s correlation coefficient between input and output to evaluate the 139 

degree of two neural networks’ synchronizing using the following equation (6). 140 

 (6 )  141 

 142 

3 Result  and discussion  143 

 144 

3 .1  The  S ig na l  inp ut  a nd  co rrespo n ding  o utp ut  145 

 146 
Before we can evaluate the training performance, a proper model of a biological neural network 147 

must first be constructed. Brian Simulator allows semi scalable systems in which the number of 148 

neurons in a network can be specified arbitrarily. However, simulations showed that the built in 149 

connection topologies in Brian Simulator induces excess spiking activities when a network is 150 

sufficiently large.  151 

 152 

3 .1 .1  Ra ndo m co nnec t i o ns  in  B io lo g ica l  Netwo rk  153 

 154 
When the neurons within a network are connected randomly, spontaneous spiking occurs when the 155 

network is large. Since increased neural network size also increases the number of synapses 156 

connected to a neuron will also increase. The accumulation of signals from these synapses may 157 

easily exceed the spiking threshold for the post-synaptic neuron. This eventually results in a 158 

positive feedback loop, which is not biologically tolerable. 159 

  160 



3 .1 .2  Lo ca l i zed  co nnec t io ns  in  B io lo g ica l  Netw o rk  161 

 162 
In an attempt to solve for the scalability of the system, a new routing algorithm that takes into 163 

account the distance between two neurons is proposed, with probabilities that a connection exists 164 

between neurons in close proximity being higher than when two neurons are placed distantly 165 

apart. This eliminates the spontaneous spiking activities of a simulated biological neural network. 166 

 167 

As of now, the input signal from Binput to B is delivered on a 1-1 basis, in which the 80 input 168 

(Figure 4(a)) channels map to the first 80 out of the 400 channels in network B. When hidden 169 

layer of B is connected by a random way, the neurons of B are easy to be bursting, like Figure 4 170 

(b) shows. It is still problematic, however, if localized connections are implemented in network B. 171 

If only the first 80 channels of network B are provided with input, the signals normally would not 172 

reach faraway neurons because localized connection dictate that signals are not likely to be 173 

delivered to distant neurons in a single hop (Figure 4(c)). In the next section we aim to provide a 174 

solution to this problem. 175 

 176 

 177 
(a) 178 

 179 
(b)                                 (c) 180 

Figure 4. The plot of spiking of input and output layer when the connection is conducted via small 181 

world. (a) Random spiking of input layer of network B; (b) the spiking of network B when the 182 

connection of B itself is random; the connection between input layer and hidden layer of B is also 183 

random; (c) the spiking of network B when the connection of B itself is localized; the connection 184 

between input layer and hidden layer of B is one to one to one. 185 

 186 

3 .1 .3  Sma l l  w o r ld  co nnec t io ns  a t  the  in ter face  187 

 188 
To provide comprehensive stimulation of a network that adopts localized intra-connections, 189 

optimally inputs need to be spread evenly on all channels. However, this is infeasible in vivo as 190 

neurons in living organisms are not evenly spaced, making it hard for electrodes to evenly 191 

stimulate the whole network. To better reflect reality, a simplified small world connection model 192 



is used. In our model, 40 synapses form random connections with neurons in network B. The rest 193 

of the 40 connections are location-based. As Figure 5 shows, results from this combination of 194 

small world and location-based connections are consistent with biological experiments. Therefor 195 

we will use such connecting topologies throughout this project. 196 

 197 
(a)                                     (b) 198 

Figure 5. The plot of spiking of input and output layer when the connection is conducted via small 199 

world. (a) The spiking of input layer of B; (b) the spiking of output layer of B. 200 

 201 

 202 

3 .2  Per fo r ma nce  a na ly s i s  203 

 204 

There are two ways to quantify the synchronization between two networks. To analyze the 205 

channel-to-channel synchronization, correlation between any two channels can be evaluated. In 206 

Python, this is simply done by taking the Pearson’s correlation coefficients between two channels. 207 

To determine the activity of a whole network, a small-time-window averaging of all the spikes in a 208 

certain time period can be calculated as a function of time[6]. Correlation coefficient can then be 209 

derived based on the averaging results from the input and the output networks. 210 

 211 

After the training is complete, the system is ready to be tested. A perturbed sinusoidal signal 212 

(Figure 6(a)) is used to evaluate the performance of our anti-distortion training algorithm. Our 213 

input signal differs from normal sinusoidal spike trains in that every channel is still independent of 214 

each other. Thus channel-to-channel correlation analysis still gives meaningful information as to 215 

how an input channel correlates to an output channel. Figure 6(b), (c) show the output before and 216 

after optimizing respectively. 217 



   218 
(a)                                      (b) 219 

 220 

 221 
 (c) 222 

 Figure 6. Results of raster_plot when the input is sine. (a) The spike of A; (b) the spike of output 223 

layer of B before optimizing; (c) the spike of output layer of B after optimizing. 224 

 225 

The raster plots above show that even after optimization, signals are still rather distorted. 226 

However, small-time-window averaging indicates improvement in overall synchronization of 227 

neural activities between the two networks, with an increase in correlation from 0.4610 to 0.7255. 228 

Figure 7(a), (b) show the results of using perturbed sinusoidal signals as inputs before and after 229 

optimizing respectively. When using indecently random signals as inputs, the improvement is also 230 

evident, with an increase in correlation from -0.0644 to 0.2915, as the Figure 7(c), (d) show.  231 

  232 

 233 
(a)                         (b) 234 



 235 
(c)                             (d) 236 

Figure 7. Results of raster_plot. The width of time window is 1ms. (a) The spike of A, when the 237 

input is sine; (b) the spike of output layer of B, when the input is sine; (c) the spike of A, when the 238 

input is Poisson; (d) the spike of output layer of B, when the input is Poisson. 239 

 240 

We further analyzed the exact reasons that lead to the increase of the synchronization. Above 241 

results show that our optimizing is effective. After using the M-1 to replace the original matrix of 242 

full connection, what parameters are changed? ‘The effective number of synapse and the strength 243 

of every synapse’.  244 

 245 

It seems obvious that when the strength of every synapse increases, the synchronization will 246 

increase[7]. But that makes sense only when inhibitive synapse does not exist. Actually, the 247 

synchronization decreased when we enlarge the value of M-1. That identifies that the increase of 248 

synchronization of two networks constructed in our project is not directly related to the increase of 249 

strength of matrix weight. Therefore the remaining possible reason is that the effective number of 250 

synapse which enhances synchronization increase.  251 

 252 

3 .3  Adv a nta g es  a nd  d i sa dv a nta g es  253 

 254 

Basically, we only need one run to obtain the connection matrix. It is more efficient compared 255 

with other recursive training methods given limited train time. However, the matrix we obtained is 256 

not exact the transfer matrix. As a result, the corresponding correlation between input and output 257 

might not be the highest.  258 

 259 

3 .4  Future  w o rk  260 
 261 

The results above hinted that conversion from the inverse matrix to the pre-processing connection 262 

matrix may not be straightforward. Several optimizations of the inverse correlation matrix can be 263 

carried out in order to obtain greatest improvement over synchronization between two networks. 264 

Such modifications include normalization and shifting the weights such that the mean becomes 265 

zero; however, none of these measures can completely counteract the distortions introduced in the 266 

biological network. We suspect this is due to the intrinsic difference between a connection matrix 267 

and an inverse correlation matrix. 268 

 269 

A more deterministic way of solving such problems involves deriving the transfer function of the 270 

nonlinear biological neural network[8]. More accurate distortion elimination mechanisms can be 271 

developed accordingly. 272 

 273 

4 Conclusion 274 

  275 

In this project, we tried to use the synchronizing degree of two networks to measure the fidelity of 276 

signal reconstructions at the brain. Based on Python and Brian, two networks were constructed. 277 



Compared ways to connect two network, we found that the efficiency of signal delivery 278 

could be enhanced when using small world connection. Besides, we obtained the 279 

characteristic matrix M of network B basically via calculating the correlation between input 280 

elements and output elements of B. At last, we consider the M-1 as the weight matrix of A and 281 

input of B. In this way, we successfully increased the synchronizing between two networks. 282 
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APPENDIX 319 

# -*- coding: utf-8 -*- 320 

 321 

from brian import * 322 

import scipy as sp 323 

import random 324 

from scipy.stats.stats import pearsonr  325 

from numpy import matrix 326 

 327 

matplotlib.pyplot.close("all") 328 

 329 

 330 

 331 

tau = 20 * msecond # membrane time constant 332 

Vt = -50 * mV # spike threshold 333 

Vr = -60 * mV # reset value 334 

El = -61 * mV # resting potential 335 

psp = 0.5 * mvolt # postsynaptic potential size 336 

neuron_number=400 337 

runtime=200 * msecond 338 

for runrep in range (1): 339 

reinit(0*second) 340 

def Corr(array1, array2,len_array): 341 

M_forward=sp.zeros((len_array,len_array)) 342 

for i in range(len_array): 343 

for j in range(len_array): 344 

temp=pearsonr(array1[i],array2[j]) 345 

M_forward[i,j]=temp[0] 346 

return M_forward 347 

def SPKvsT(neu_spikes, timewindow, timescale): 348 

neuronnum, spktime= zip(*neu_spikes)  349 

spikeaccum=zeros(timewindow*timescale) 350 

for tidx in range(timewindow*timescale): 351 

for spkidx in range(len(spktime)): 352 

if abs(tidx/timescale *ms-spktime[spkidx]) < 1/timescale *ms: 353 

spikeaccum[tidx]=spikeaccum[tidx ]+1 354 

return spikeaccum 355 

#def GetConnectionMatrix(): 356 

# B_input=PoissonGroup(50, rates=40*Hz) 357 

# V_B_input = StateMonitor(B_input, 'V', record=True) 358 

# V_B_output = StateMonitor(B_output, 'V', record=True) 359 

# corr=Corr(V_B_input,V_B_output,50) 360 

# return corr 361 

#def Matrix_distance(neuron_number): 362 

# weightmatrix=sp.zeros((neuron_number,neuron_number)) 363 

# for x in range(neuron_number): 364 

# for y in range(x+1,neuron_number): 365 



# if random.random()>0.3: #excitatory connection 366 

# weightmatrix[x,y]=50*exp(-abs(x-y)/100)*mV 367 

# elif random.random()<0.1: #inhibitory connection 368 

# weightmatrix[x,y]=-50*exp(-abs(x-y)/100)*mV 369 

# else: 370 

# weightmatrix[x,y]=0 371 

# return weightmatrix  372 

# 373 

#def reconstructMatrix(Mat): 374 

# x_len, y_len =Mat.shape 375 

# weightmatrix=sp.zeros((x_len,y_len)) 376 

# for x in range(x_len): 377 

# for y in range(y_len): 378 

#eqs = Equations(''' 379 

#dV/dt = (-V+ge-gi)/taum : volt 380 

#dge/dt = -ge/taue : volt 381 

#dgi/dt = -gi/taui : volt 382 

#''') 383 

### definition of connection 384 

#B = NeuronGroup(N=400, model='dV/dt = -(V-El)/tau : volt', 385 

# threshold=Vt, reset=Vr) 386 

#B_Connection = Connection(B,B,weight=Matrix(len(B),len(B))) 387 

# 388 

# 389 

#B_input=NeuronGroup(N=50, model='dV/dt = -(V-El)/tau : volt', 390 

# threshold=Vt, reset=Vr) 391 

#B_input_Connection = 392 

Connection(B_input,B_input,structure='dense',weight=Matrix(len(B_input),len(B393 

_input))) 394 

# 395 

#  396 

#B_output=NeuronGroup(N=50, model='dV/dt = -(V-El)/tau : volt', 397 

# threshold=Vt, reset=Vr) 398 

#B_output_Connection = 399 

Connection(B_output,B_output,weight=Matrix(len(B_output),len(B_output))) 400 

# 401 

#B_input_B_Connection = 402 

Connection(B_input,B,weight=Matrix(len(B_input),len(B))) 403 

#B_B_output_Connection = 404 

Connection(B,B_output,weight=Matrix(len(B),len(B_output))) 405 

## definition of connection 406 

def sinchoose(): 407 

spikelist=[] 408 

for time in range(200): 409 

numberofspikes=int((sin(time/15 )/2 + 0.5)*80) 410 

for idx in range(numberofspikes): 411 



spikelist.append([random.randint(0,80),time*ms]) 412 

return spikelist 413 

A = SpikeGeneratorGroup(80,sinchoose()) 414 

# A=PoissonGroup(80, rates=40*Hz) 415 

B = NeuronGroup(N=400, model='dV/dt = -(V-El)/tau : volt', 416 

threshold=Vt, reset=Vr) 417 

B_Connection = Connection(B,B,weight=load('W_BB.npy')) 418 

B_input=NeuronGroup(N=80, model='dV/dt = -(V-El)/tau : volt', 419 

threshold=Vt, reset=Vr) 420 

#B_input_Connection = 421 

Connection(B_input,B_input,weight=load('W_BiBi.npy'))  422 

B_output=NeuronGroup(N=80, model='dV/dt = -(V-El)/tau : volt', 423 

threshold=Vt, reset=Vr) 424 

#B_output_Connection = 425 

Connection(B_output,B_output,weight=load('W_BoBo.npy')) 426 

B_input_B_Connection = Connection(B_input,B,weight=load('W_BiB.npy')) 427 

#B_input_B_Connection = Connection(B_input,B, sparseness=0.015625, 428 

weight=5*mV) 429 

B_B_output_Connection = Connection(B,B_output,weight=load('W_BBo.npy')) 430 

#B_B_output_Connection = Connection(B,B_output, sparseness=0.015625, 431 

weight=5*mV) 432 

C1 = Connection(A, B_input) #assume one to one A->B connection 433 

C1.connect_one_to_one(weight=1*mV) 434 

# A_B_input_Connection = Connection(A,B_input, 435 

weight=load('corr_I_avg.npy'))  436 

#A_B_input_Connection = Connection(A,B_input, 437 

weight=load('avg_corrI60.npy')) 438 

###A_B = Connection(A,B_input, weight=) 439 

#func=10* mvolt  440 

#C1 = Connection(A, B_input, weight=func) 441 

#B_input=B.subgroup(50); 442 

#B_output=B.subgroup(50); 443 

# func is the function of distance between  444 

# pre and post, the membrane potential, and the number of connection  445 

A_spike = SpikeMonitor(A) 446 

B_spike = SpikeMonitor(B) 447 

B_input_spike = SpikeMonitor(B_input) 448 

B_output_spike = SpikeMonitor(B_output) 449 

#B.V = Vr + rand(400) * (Vt - Vr) 450 

#M = StateMonitor(B, 'V', record=True) 451 

#C1[0, 0] = 50 * mV 452 

V_B_input = StateMonitor(B_input, 'V', record=True) 453 

V_B_output = StateMonitor(B_output, 'V', record=True) 454 

run(runtime) 455 

corr=Corr(V_B_input,V_B_output,80) 456 

# corr_temp=matrix(corr) 457 



# corr_I=corr_temp.I 458 

# save('corr_locoff1_'+str(runrep) ,corr ) 459 

# save('corr_I_locoff1_'+str(runrep),corr_I) 460 

print B_spike.nspikes 461 

print B_output_spike.nspikes 462 

# 463 

#figure(1) 464 

#plot(M.times / ms, M[0] / mV) 465 

 466 

xlabel('Time (in ms)') 467 

ylabel('Membrane potential (in mV)') 468 

title('Membrane potential for neuron 0') 469 

 470 

 471 

figure(1) 472 

raster_plot(A_spike) 473 

title('A_spike') 474 

 475 

figure(2) 476 

raster_plot(B_spike) 477 

title('B_spike') 478 

 479 

figure(3) 480 

raster_plot(B_input_spike) 481 

title('B_input_spike') 482 

 483 

figure(4) 484 

raster_plot(B_output_spike) 485 

title('B_output_spike, before optimizing') 486 

 487 

 488 

inputspk =SPKvsT(A_spike.spikes,200,1) 489 

outputspk=SPKvsT(B_output_spike.spikes,200,1)  490 

figure() 491 

plot(sp.arange(0,200,1),inputspk /max(inputspk ), label='Input at A: $sin$') 492 

plot(sp.arange(0,200,1),outputspk/max(outputspk), label='Output at B before 493 

optimizing') 494 

pylab.legend(loc='upper right') 495 

print pearsonr(inputspk /max(inputspk ),outputspk/max(outputspk)) 496 

 497 

///////////////////////////////////////////////////////////////////////////////////////////////////////// 498 

from brian import * 499 

import scipy as sp 500 

import random 501 

from scipy.stats.stats import pearsonr  502 



from numpy import matrix 503 

import scipy as sp 504 

from numpy import matrix 505 

 506 

avg=sp.zeros((80,80)) 507 

for i in range (5): 508 

avg=avg+load('corr_locoff1_'+str(i)+'.npy') 509 

avg=avg/10 510 

 511 

#avg=avg/(avg.max())/10 512 

 513 

save('corr_locoff1_',avg) 514 

 515 

avg_temp=matrix(avg) 516 

avg_I=avg_temp.I 517 

avg_I_transfer=avg_I+abs(avg_I.min()) 518 

avg_I_modify=avg_I_transfer/avg_I_transfer.max() 519 

save('corr_I_avg',avg_I_modify/2000) 520 

 521 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /////////// 522 

 523 

import scipy as sp 524 

import random 525 

from brian import * 526 

 527 

def Matrix(na,nb): 528 

weightmatrix=sp.zeros((na,nb)) 529 

for x in range(na): 530 

for y in range(nb): 531 

if x==y: 532 

weightmatrix[x,y]=0*mV 533 

elif random()>0.8: #excitatory connection 534 

weightmatrix[x,y]=1.00*mV 535 

elif random()<0.2: #inhibitory connection 536 

weightmatrix[x,y]=-1*mV 537 

else: 538 

weightmatrix[x,y]=0  539 

return weightmatrix 540 

save('W_BB1',Matrix(400,400)) 541 

save('W_BiBi1',Matrix(80,80)) 542 

save('W_BoBo1',Matrix(80,80)) 543 

save('W_BiB1',Matrix(80,400)) 544 

save('W_BBo1',Matrix(400,80)) 545 

 546 


